File: C:/github_repos/casibase_customer_0058/embedding/dummy.go
// Copyright 2024 The Casibase Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package embedding
import (
"context"
"math"
"strings"
)
type DummyEmbeddingProvider struct {
subType string
}
func NewDummyEmbeddingProvider(subType string) (*DummyEmbeddingProvider, error) {
p := &DummyEmbeddingProvider{
subType: subType,
}
return p, nil
}
func (p *DummyEmbeddingProvider) GetPricing() string {
return `URL:
This is dummy embedding provider
Embedding models:
This is dummy embedding provider
`
}
func hashString(s string) int {
hash := 0
for i := 0; i < len(s); i++ {
hash = 31*hash + int(s[i])
}
return hash
}
func (p *DummyEmbeddingProvider) QueryVector(text string, ctx context.Context, lang string) ([]float32, *EmbeddingResult, error) {
dimensions := 1536
freqMap := make(map[string]int)
words := strings.Fields(text)
for _, word := range words {
freqMap[strings.ToLower(word)]++
}
vector := make([]float32, dimensions)
for word, freq := range freqMap {
hash := int(math.Abs(float64(hashString(word)))) % dimensions
vector[hash] += float32(freq)
}
norm := 0.0
for _, v := range vector {
norm += float64(v * v)
}
norm = math.Sqrt(norm)
for i := range vector {
vector[i] /= float32(norm)
}
return vector, &EmbeddingResult{}, nil
}