File: C:/github_repos/casibase_customer_0022/object/search_default_util.go
// Copyright 2023 The Casibase Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package object
import (
"math"
"sort"
"github.com/beego/beego/logs"
)
func dot(vec1, vec2 []float32) float32 {
if len(vec1) != len(vec2) {
panic("Vector lengths do not match")
}
dotProduct := float32(0.0)
for i := range vec1 {
dotProduct += vec1[i] * vec2[i]
}
return dotProduct
}
func norm(vec []float32) float32 {
normSquared := float32(0.0)
for _, val := range vec {
normSquared += val * val
}
return float32(math.Sqrt(float64(normSquared)))
}
func cosineSimilarity(vec1, vec2 []float32, vec1Norm float32) float32 {
dotProduct := dot(vec1, vec2)
vec2Norm := norm(vec2)
if vec2Norm == 0 {
return 0.0
}
return dotProduct / (vec1Norm * vec2Norm)
}
type SimilarityIndex struct {
Similarity float32
Index int
}
func getNearestVectors(target []float32, vectors [][]float32, n int) ([]SimilarityIndex, error) {
targetNorm := norm(target)
similarities := []SimilarityIndex{}
for i, vector := range vectors {
if len(target) != len(vector) {
logs.Warn("The target vector's length: [%d] should equal to knowledge vector's length: [%d]", len(target), len(vector))
continue
}
similarity := cosineSimilarity(target, vector, targetNorm)
similarities = append(similarities, SimilarityIndex{similarity, i})
}
sort.Slice(similarities, func(i, j int) bool {
return similarities[i].Similarity > similarities[j].Similarity
})
if n > len(similarities) {
n = len(similarities)
}
res := similarities[:n]
return res, nil
}